
Android
What is Android?
Android is a software stack for mobile devices that includes an operating system, middleware and key
applications. The Android SDK provides the tools and APIs necessary to begin developing applications
on the Android platform using the Java programming language.

The following diagram show the major components of the Android operating system:

How do we get started?
The first thing you need to do is to download the Android Studio IDE by going to:

https://developer.android.com/studio/index.html
Android Studio is available for Windows, Mac and Linux, once you download the installer, run it and
follow the setup wizard to install Android Studio and the necessary SDK tools. When you first start
out, it's recommended that you simply select all of the default options and let it install and setup
everything for you.

Getting started with Android Studio:
The first time you start up Android Studio, you'll be presented with the following screen:

It's recommended that you first read the Android Studio User Guide which will explain the basic
workflow and layout of the Android Studio IDE. There are a large number of step-by-step tutorials
online that will walk you through the creation of some basic Android apps to get you started. Now is
also a good time to start reading up on Java, since all of the Android programming you'll be doing will
be in Java:

• Android Studio User Guide: https://developer.android.com/studio/intro/index.html
Writing your first app, sample code, UI and layout editor, building and running apps, etc...

• Android Developer Training: https://developer.android.com/training/index.html
Google's training classes and guides for getting started with app development.

• A few other online resources for Android tutorials and sample projects:
◦ Tutorials Point: https://www.tutorialspoint.com/android/
◦ Vogella: http://www.vogella.com/tutorials/android.html
◦ Tutorials for Beginners: https://www.sitepoint.com/12-android-tutorials-beginners/
◦ Javapoint: https://www.javatpoint.com/android-tutorial
◦ Java tutorial: http://www.androidauthority.com/java-tutorial-beginners-582147/

https://developer.android.com/studio/index.html
http://www.androidauthority.com/java-tutorial-beginners-582147/
https://www.javatpoint.com/android-tutorial
https://www.sitepoint.com/12-android-tutorials-beginners/
http://www.vogella.com/tutorials/android.html
https://www.tutorialspoint.com/android/
https://developer.android.com/training/index.html
https://developer.android.com/studio/intro/index.html

Creating your first app:
Once you've opened Android Studio, you'll be sitting at the Welcome screen, click on Start a new
Android Studio project, and enter the following information while clicking Next on each screen:

Configure your new project:
Application Name: My First Application
Company Domain: apps.cool

Click Next.

Select the form factors your app will run on:
[X] Phone and Tablet
 Minimum SDK: API 15

We are creating a simple app at this point, but if you wanted to also created an Android Wear, TV, Auto
or Glass app, you could enable those platforms as well on this screen. Click Next.

Add an Activity to Mobile:
Select Empty Activity and click Next.

Customize the Activity:
Leave the default options and click Finish.

Android Studio will now create the necessary project structure and you will now be sitting at the main
screen in Android Studio:

The two main areas that we want to focus on, are under:
app > java > cool.apps.myfirstapplication > MainActivity.java
app > res > layout > activity_main.xml

The activity_main.xml is the layout file for the main activity of your Android app. You can think of an
“activity” as being a graphic window where you create your user interface. The MainActivity.java is
the file that will contain your source code to handle events that occur on the activity. So let's first look
at the activity_main.xml file, when you open it, you'll see two tabs at the bottom, one labeled Design
and the other Text. The Text view allows you to see the actual text that makes up the XML file for the
layout view, however since we're just starting out, I'd recommend you stick with the Design view
which will allow you to graphically manipulate the widgets (buttons, text boxes, images, etc) in the
layout.

By default you should see just a TextView widget in your application that has the text “Hello World”,
we want to also add a Button, so drag a Button from the Widgets area and place it under the TextView
that is already on your activity, so that it looks like this:

You can modify the properties of each widget, but first selecting the widget on the screen, and then in
the Properties area, scrolling through the list of properties until you find what you are looking for:

The two main properties that you need to be aware of are the id and text properties. The id property is
basically the variable name for the widget which we'll use to refer to that widget in our code. For our
TextView widget, it's id is “textView” and for our Button it's id is “button”. If we wanted to, we could
easily change those names to something else, but for now we'll leave them as their default names. The
text property allows you to change the text that is displayed on the widget. For our TextView it's text
property is set to “Hello World!”, and our Button has it's text property set to “New Button”. We want to
change that to say “Change Label”. You'll notice that the text in the button on the screen is in all
capital letters, this is by design, but if you really don't like it, you can modify the button's
TransformationMethod (which we won't talk about here), so that it doesn't automatically capitalize the
letters on the button. The next thing we want to do is to change the layout of the widgets so that they
fill out the entire width of the activity, so on both the TextView and the Button, in their properties, set:

layout:width = fill_parent
gravity = center

Your activity's layout should now look like this:

Now we can start coding our activity, so switch over to the MainActivity.java. The first thing we need
to do is to create two variables (lines 7, 8) that we'll use to reference (lines 15, 16) the two graphical
widgets that are on our activity:

One thing you should notice at this point is that the Android Studio has highlighted the TextView and
Button data types in red indicating that it doesn't know what they are. The reason why Android Studio
doesn't know what they are is because we haven't imported the proper classes into our code yet. This
can easily be fixed by placing your mouse first over top of the TextView and pressing Alt-Enter on your
keyboard, and then doing the same thing for the Button, this will cause Android Studio to pull in the
two class files (android.widget.TextView and android.widget.Button). You will notice that they are no
longer highlighted in red:

Now we need to create a function that will get called when our button is clicked. Add the following
onButtonClick function to your code:

When you add that function, View will be highlighted red, you'll have to click on it, and then press Alt-
Enter in order to get the correct class imported.

Now we need to connect that onButtonClick function to our actual button, so we need to switch back
over to the activity_main.xml and select the Button and in the properties area, scroll down to the
onClick property and click the little down arrow which will bring up a list of function names, select the
onButtonClick function. Now anytime someone clicks that button, the onButtonClick function will get
triggered.

We are done coding, now let's see how we run our app in an emulator...

Setting up an emulator:
The Android Emulator allows you to create a virtual Android device on your development computer.
This allows you to immediately test your Android apps on your computer without having to use a
physical Android device.

In Android Studio, go to the Tools → Android → AVD Manager and click the “+ Create Virtual
Device...” button. You can choose whichever hardware device you like and then click Next. Choose
whichever system image you want for your Android virtual device and click Next. You can then give
your Android virtual device a name and change any of it's settings if you like, and then click Finish.

You can now click the little green arrow play button to start up your AVD, at which point you'll then
see an emulator window open showing you an Android device booting up and then you'll be presented
with the main Android desktop.

From here you can navigate the Android virtual device just like it was a real Android device.

Running your app in the emulator:
Now that we have an emulator running, we can now run our app that we just created inside of our
emulator. Back in Android Studio, click the green arrow button at the top center of the screen:

You will then be presented with a dialog box asking you which target device you'd like to use. If you
have any physical Android devices connected and if they are in “USB debugging” mode, then you can
either select one of those devices, or any of your virtual devices from the list and simply click “OK”.
Your app will be installed on the device and will immediately open. You can now make any changes to
the code that you want in Android Studio, and simply click the green arrow button to install the updated
version of your app on your Android device.

That's it...I highly recommend looking at the URLs on the second page of this document for more
tutorials and sample projects.

